qsirecon.workflows.recon.dipy module
Dipy Reconstruction workflows
- qsirecon.workflows.recon.dipy.init_dipy_brainsuite_shore_recon_wf(inputs_dict, name='dipy_3dshore_recon', qsirecon_suffix='', params={})[source]
Reconstruct EAPs, ODFs, using 3dSHORE (brainsuite-style basis set).
Inputs
qsirecon outputs
Outputs
- shore_coeffs
3dSHORE coefficients
- rtop
Voxelwise Return-to-origin probability.
- rtap
Voxelwise Return-to-axis probability.
- rtpp
Voxelwise Return-to-plane probability.
Params
- write_fibgz: bool
True writes out a DSI Studio fib file
- write_mif: bool
True writes out a MRTrix mif file with sh coefficients
- convert_to_multishell: str
either “HCP”, “ABCD”, “lifespan” will resample the data with this scheme
- radial_order: int
Radial order for spherical harmonics (even)
- zeta: float
Zeta parameter for basis set.
- tau:float
Diffusion parameter (default= 4 * np.pi**2)
- regularization
“L2” or “L1”. Default is “L2”
- lambdaN
LambdaN parameter for L2 regularization. (default=1e-8)
- lambdaL
LambdaL parameter for L2 regularization. (default=1e-8)
- regularization_weighting: int or “CV”
L1 regualrization weighting. Default “CV” (use cross-validation). Can specify a static value to use in all voxels.
- l1_positive_constraint: bool
Use positivity constraint.
- l1_maxiter
Maximum number of iterations for L1 optization. (Default=1000)
- l1_alpha
Alpha parameter for L1 optimization. (default=1.0)
- pos_grid: int
Grid points for estimating EAP(default=11)
- pos_radius
Radius for EAP estimation (default=20e-03)
- qsirecon.workflows.recon.dipy.init_dipy_mapmri_recon_wf(inputs_dict, name='dipy_mapmri_recon', qsirecon_suffix='', params={})[source]
Reconstruct EAPs, ODFs, using 3dSHORE (brainsuite-style basis set).
Inputs
qsirecon outputs
Outputs
- shore_coeffs
3dSHORE coefficients
- rtop
Voxelwise Return-to-origin probability.
- rtap
Voxelwise Return-to-axis probability.
- rtpp
Voxelwise Return-to-plane probability.
- msd
Voxelwise MSD
- qiv
q-space inverse variance
- lapnorm
Voxelwise norm of the Laplacian
Params
- write_fibgz: bool
True writes out a DSI Studio fib file
- write_mif: bool
True writes out a MRTrix mif file with sh coefficients
- radial_order: int
An even integer that represent the order of the basis
- laplacian_regularization: bool
Regularize using the Laplacian of the MAP-MRI basis.
- laplacian_weighting: str or scalar
The string ‘GCV’ makes it use generalized cross-validation to find the regularization weight. A scalar sets the regularization weight to that value and an array will make it selected the optimal weight from the values in the array.
- positivity_constraint: bool
Constrain the propagator to be positive.
- pos_grid: int
Grid points for estimating EAP(default=15)
- pos_radius
Radius for EAP estimation (default=20e-03) or “adaptive”
- anisotropic_scalingbool,
If True, uses the standard anisotropic MAP-MRI basis. If False, uses the isotropic MAP-MRI basis (equal to 3D-SHORE).
- eigenvalue_thresholdfloat,
Sets the minimum of the tensor eigenvalues in order to avoid stability problem.
- bval_thresholdfloat,
Sets the b-value threshold to be used in the scale factor estimation. In order for the estimated non-Gaussianity to have meaning this value should set to a lower value (b<2000 s/mm^2) such that the scale factors are estimated on signal points that reasonably represent the spins at Gaussian diffusion.
- dti_scale_estimationbool,
Whether or not DTI fitting is used to estimate the isotropic scale factor for isotropic MAP-MRI. When set to False the algorithm presets the isotropic tissue diffusivity to static_diffusivity. This vastly increases fitting speed but at the cost of slightly reduced fitting quality. Can still be used in combination with regularization and constraints.
- static_diffusivityfloat,
the tissue diffusivity that is used when dti_scale_estimation is set to False. The default is that of typical white matter D=0.7e-3 _[5].
- cvxpy_solverstr, optional
cvxpy solver name. Optionally optimize the positivity constraint with a particular cvxpy solver. See http://www.cvxpy.org/ for details. Default: None (cvxpy chooses its own solver)
- qsirecon.workflows.recon.dipy.init_dipy_dki_recon_wf(inputs_dict, name='dipy_dki_recon', qsirecon_suffix='', params={})[source]
Fit DKI.
This workflow corresponds to the “DKI_reconstruction” pipeline action.
- Parameters:
inputs_dict (dict) – Dictionary containing the input node fields.
name (str) – Name of the workflow.
qsirecon_suffix (str) – Suffix for the qsirecon outputs.
params (dict) – Dictionary containing the parameters for the workflow. Parameters that can be passed to the workflow are:
- wmtibool
Whether to compute microstructural metrics.
- write_fibgzbool
Whether to write out a DSI Studio fib file.
- write_mifbool
Whether to write out a MRTrix mif file with sh coefficients.
- radial_orderint
An even integer that represents the order of the basis.
- Outputs:
tensor (str) – Path to the tensor file.
fa (str) – Path to the FA file.
md (str) – Path to the MD file.
rd (str) – Path to the RD file.
ad (str) – Path to the AD file.
color_fa (str) – Path to the color FA file.
kfa (str) – Path to the KFA file.
mk (str) – Path to the MK file.
ak (str) – Path to the AK file.
rk (str) – Path to the RK file.
mkt (str) – Path to the MKT file.
awf (str) – Only if wmti is True
rde (str) – Only if wmti is True
tortuosity (str) – Only if wmti is True
trace (str) – Only if wmti is True
recon_scalars (str) – Path to the recon_scalars file.
- qsirecon.workflows.recon.dipy.external_format_datasinks(qsirecon_suffix, params, wf)[source]
Add datasinks for Dipy Reconstructions in other formats.
- qsirecon.workflows.recon.dipy.infer_deltas(metadata, params)[source]
Infer deltas from available information.
- qsirecon.workflows.recon.dipy.init_dipy_brainsuite_shore_recon_wf(inputs_dict, name='dipy_3dshore_recon', qsirecon_suffix='', params={})[source]
Reconstruct EAPs, ODFs, using 3dSHORE (brainsuite-style basis set).
Inputs
qsirecon outputs
Outputs
- shore_coeffs
3dSHORE coefficients
- rtop
Voxelwise Return-to-origin probability.
- rtap
Voxelwise Return-to-axis probability.
- rtpp
Voxelwise Return-to-plane probability.
Params
- write_fibgz: bool
True writes out a DSI Studio fib file
- write_mif: bool
True writes out a MRTrix mif file with sh coefficients
- convert_to_multishell: str
either “HCP”, “ABCD”, “lifespan” will resample the data with this scheme
- radial_order: int
Radial order for spherical harmonics (even)
- zeta: float
Zeta parameter for basis set.
- tau:float
Diffusion parameter (default= 4 * np.pi**2)
- regularization
“L2” or “L1”. Default is “L2”
- lambdaN
LambdaN parameter for L2 regularization. (default=1e-8)
- lambdaL
LambdaL parameter for L2 regularization. (default=1e-8)
- regularization_weighting: int or “CV”
L1 regualrization weighting. Default “CV” (use cross-validation). Can specify a static value to use in all voxels.
- l1_positive_constraint: bool
Use positivity constraint.
- l1_maxiter
Maximum number of iterations for L1 optization. (Default=1000)
- l1_alpha
Alpha parameter for L1 optimization. (default=1.0)
- pos_grid: int
Grid points for estimating EAP(default=11)
- pos_radius
Radius for EAP estimation (default=20e-03)
- qsirecon.workflows.recon.dipy.init_dipy_dki_recon_wf(inputs_dict, name='dipy_dki_recon', qsirecon_suffix='', params={})[source]
Fit DKI.
This workflow corresponds to the “DKI_reconstruction” pipeline action.
- Parameters:
inputs_dict (dict) – Dictionary containing the input node fields.
name (str) – Name of the workflow.
qsirecon_suffix (str) – Suffix for the qsirecon outputs.
params (dict) – Dictionary containing the parameters for the workflow. Parameters that can be passed to the workflow are:
- wmtibool
Whether to compute microstructural metrics.
- write_fibgzbool
Whether to write out a DSI Studio fib file.
- write_mifbool
Whether to write out a MRTrix mif file with sh coefficients.
- radial_orderint
An even integer that represents the order of the basis.
- Outputs:
tensor (str) – Path to the tensor file.
fa (str) – Path to the FA file.
md (str) – Path to the MD file.
rd (str) – Path to the RD file.
ad (str) – Path to the AD file.
color_fa (str) – Path to the color FA file.
kfa (str) – Path to the KFA file.
mk (str) – Path to the MK file.
ak (str) – Path to the AK file.
rk (str) – Path to the RK file.
mkt (str) – Path to the MKT file.
awf (str) – Only if wmti is True
rde (str) – Only if wmti is True
tortuosity (str) – Only if wmti is True
trace (str) – Only if wmti is True
recon_scalars (str) – Path to the recon_scalars file.
- qsirecon.workflows.recon.dipy.init_dipy_mapmri_recon_wf(inputs_dict, name='dipy_mapmri_recon', qsirecon_suffix='', params={})[source]
Reconstruct EAPs, ODFs, using 3dSHORE (brainsuite-style basis set).
Inputs
qsirecon outputs
Outputs
- shore_coeffs
3dSHORE coefficients
- rtop
Voxelwise Return-to-origin probability.
- rtap
Voxelwise Return-to-axis probability.
- rtpp
Voxelwise Return-to-plane probability.
- msd
Voxelwise MSD
- qiv
q-space inverse variance
- lapnorm
Voxelwise norm of the Laplacian
Params
- write_fibgz: bool
True writes out a DSI Studio fib file
- write_mif: bool
True writes out a MRTrix mif file with sh coefficients
- radial_order: int
An even integer that represent the order of the basis
- laplacian_regularization: bool
Regularize using the Laplacian of the MAP-MRI basis.
- laplacian_weighting: str or scalar
The string ‘GCV’ makes it use generalized cross-validation to find the regularization weight. A scalar sets the regularization weight to that value and an array will make it selected the optimal weight from the values in the array.
- positivity_constraint: bool
Constrain the propagator to be positive.
- pos_grid: int
Grid points for estimating EAP(default=15)
- pos_radius
Radius for EAP estimation (default=20e-03) or “adaptive”
- anisotropic_scalingbool,
If True, uses the standard anisotropic MAP-MRI basis. If False, uses the isotropic MAP-MRI basis (equal to 3D-SHORE).
- eigenvalue_thresholdfloat,
Sets the minimum of the tensor eigenvalues in order to avoid stability problem.
- bval_thresholdfloat,
Sets the b-value threshold to be used in the scale factor estimation. In order for the estimated non-Gaussianity to have meaning this value should set to a lower value (b<2000 s/mm^2) such that the scale factors are estimated on signal points that reasonably represent the spins at Gaussian diffusion.
- dti_scale_estimationbool,
Whether or not DTI fitting is used to estimate the isotropic scale factor for isotropic MAP-MRI. When set to False the algorithm presets the isotropic tissue diffusivity to static_diffusivity. This vastly increases fitting speed but at the cost of slightly reduced fitting quality. Can still be used in combination with regularization and constraints.
- static_diffusivityfloat,
the tissue diffusivity that is used when dti_scale_estimation is set to False. The default is that of typical white matter D=0.7e-3 _[5].
- cvxpy_solverstr, optional
cvxpy solver name. Optionally optimize the positivity constraint with a particular cvxpy solver. See http://www.cvxpy.org/ for details. Default: None (cvxpy chooses its own solver)