qsirecon.workflows.recon.tortoise module

TORTOISE recon workflows

qsirecon.workflows.recon.tortoise.init_tortoise_estimator_wf(inputs_dict, name='tortoise_recon', qsirecon_suffix='', params={})[source]

Run estimators from TORTOISE.

This workflow may run EstimateTensor and/or EstimateMAPMRI depending on the configuration.

Inputs

Default qsirecon inputs

Outputs

Params

estimate_tensor: dict

parameters for estimating a tensor fit. A minimal example would be {"bval_cutoff": 2400, "reg_mode": "WLLS"}

estimate_mapmri: dict

parameters for EstimateMAMPRI. A minimal example would be {"map_order": 4}.

estimate_tensor_separately: bool

If you’re estimating MAPMRI, should the tensor estimation occur first outside of the call to EstimateMAPMRI? Setting to True would require entries for both "estimate_tensor" and "estimate_mapmri".

qsirecon.workflows.recon.tortoise.init_tortoise_estimator_wf(inputs_dict, name='tortoise_recon', qsirecon_suffix='', params={})[source]

Run estimators from TORTOISE.

This workflow may run EstimateTensor and/or EstimateMAPMRI depending on the configuration.

Inputs

Default qsirecon inputs

Outputs

Params

estimate_tensor: dict

parameters for estimating a tensor fit. A minimal example would be {"bval_cutoff": 2400, "reg_mode": "WLLS"}

estimate_mapmri: dict

parameters for EstimateMAMPRI. A minimal example would be {"map_order": 4}.

estimate_tensor_separately: bool

If you’re estimating MAPMRI, should the tensor estimation occur first outside of the call to EstimateMAPMRI? Setting to True would require entries for both "estimate_tensor" and "estimate_mapmri".